I am Lord Opublikowano 5 Lutego 2012 Udostępnij Opublikowano 5 Lutego 2012 Czym są lengthdiry? Dokumentacja GMa mówi: lengthdir_x(len,dir) Returns the horizontal x-component of the vector determined by the indicated length and direction. lengthdir_y(len,dir) Returns the vertical y-component of the vector determined by the indicated length and direction. czyli lengthdir_x rzutuje dwuwymiarowy wektor na poziomą oś x lengthdir_y rzutuje dwuwymiarowy wektor na pionową oś y Wektor w tych funkcjach podaje się poprzez wpisanie jego długości ( argument len ) oraz jego odchylenia od osi x w stopniach ( argument dir ) przedstawiam wam mój sposób liczenia argumentów dla funkcji: Dołączam także przykład GM8. https://gmclan.org/up539_12_lengthdir_info.html Dodatkowa informacja jak wyglądają funkcje lenghtdir od środka: GML (lendthdirx) return cos( argument1 * pi/180 ) * argument0; GML (lendthdiry) return -sin( argument1 * pi/180 ) * argument0; ( * pi/180 jest to konwersja radiany na stopnie ) Mam nadzieje że to trochę rozwiąże tak częste problemy z tymi funkcjami. Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
karolo320 Opublikowano 5 Lutego 2012 Udostępnij Opublikowano 5 Lutego 2012 len=point_distance(x,y,xlufy,ylufy) dir=point_direction(x,y,xlufy,ylufy)+direction tak jakos latwiej :P Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
I am Lord Opublikowano 5 Lutego 2012 Autor Udostępnij Opublikowano 5 Lutego 2012 Przedstawiłem matematyczną interpretację tych funkcji a nie gotowy wynik. Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
TheMarcQ Opublikowano 5 Lutego 2012 Udostępnij Opublikowano 5 Lutego 2012 Napisałeś wyjaśnienie co to lenghtdiry językiem zupełnie niezrozumiałym dla normalnego śmiertelnika. Łatwiej jest napisać, że wyliczają z funkcji trygonometrycznych punkt końca przeciwprostokątnej na podstawie konta, a funkcje te są w pełni wytłumaczone na wikipedia i w podręczniku do liceum. Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
I am Lord Opublikowano 5 Lutego 2012 Autor Udostępnij Opublikowano 5 Lutego 2012 Ja chodziłem do technikum także nie wiem czego uczą w tych śmiesznych liceach że nie ma tam na matmie pojęcia rzutowania. Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
Sernat Opublikowano 5 Lutego 2012 Udostępnij Opublikowano 5 Lutego 2012 Czym są lengthdiry? Dokumentacja GMa mówi: czyli lengthdir_x rzutuje dwuwymiarowy wektor na poziomą oś x lengthdir_y rzutuje dwuwymiarowy wektor na pionową oś y Wektor w tych funkcjach podaje się poprzez wpisanie jego długości ( argument len ) oraz jego odchylenia od osi x w stopniach ( argument dir ) przedstawiam wam mój sposób liczenia argumentów dla funkcji: Dołączam także przykład GM8. https://gmclan.org/up539_12_lengthdir_info.html Dodatkowa informacja jak wyglądają funkcje lenghtdir od środka: GML (lendthdirx) return cos( argument1 * pi/180 ) * argument0; GML (lendthdiry) return -sin( argument1 * pi/180 ) * argument0; Mam nadzieje że to trochę rozwiąże tak częste problemy z tymi funkcjami. Fajny pomysł i wykonanie także zacne, szkoda tylko, że przyjąłeś błędne założenie, że większość ludzi to nie debile. Ja chodziłem do technikum także nie wiem czego uczą w tych śmiesznych liceach że nie ma tam na matmie pojęcia rzutowania. Haha xD . Jestem po liceum, ale i tak mnie to bawi :P . Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
TheMarcQ Opublikowano 5 Lutego 2012 Udostępnij Opublikowano 5 Lutego 2012 Ja chodziłem do technikum także nie wiem czego uczą w tych śmiesznych liceach że nie ma tam na matmie pojęcia rzutowania. Haha xD . Jestem w gimnazjum, ale i tak mnie to bawi . Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
kt1117 Opublikowano 5 Lutego 2012 Udostępnij Opublikowano 5 Lutego 2012 Ja nie wiem co to rzutowanie, ale też mnie to śmieszy. ;) Ale trygonometria jest fajna. Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
karolo320 Opublikowano 5 Lutego 2012 Udostępnij Opublikowano 5 Lutego 2012 ja nie wiem, co to jest rzutowanie, nie wiem co to jest trygonometria, nie smieszy mnie to i zaraz pewnie dostane warna. Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
I am Lord Opublikowano 5 Lutego 2012 Autor Udostępnij Opublikowano 5 Lutego 2012 Proszę bardzo oto rzutowanie wektora na osie. Strasznie skomplikowane prawda? Nie wiem co was śmieszy ale ok. Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
Sernat Opublikowano 5 Lutego 2012 Udostępnij Opublikowano 5 Lutego 2012 Śmieszy mnie po prostu jak fajnie podsumowałeś poziom nauczania w liceach, co jest niestety przykrą prawdą (aczkolwiek nie twierdzę, że w technikach jest lepiej). A co mają na myśli trollki piszące wyżej to mnie nie obchodzi. Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
kt1117 Opublikowano 5 Lutego 2012 Udostępnij Opublikowano 5 Lutego 2012 Czyli używałem tego, tylko nie wiedziałem jak to się nazywa. ;) Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
Firemark Opublikowano 5 Lutego 2012 Udostępnij Opublikowano 5 Lutego 2012 Ja chodziłem do technikum także nie wiem czego uczą w tych śmiesznych liceach że nie ma tam na matmie pojęcia rzutowania. Ja jestem studentem 2 roku informatyki i też nie wiem co to rzutowanie. Pewnie dlatego, że mnie całek uczą i dystrybuanty. Za to w liceum się nauczyłem co to sinusy, cosinusy i radiany. Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
Tymon Opublikowano 5 Lutego 2012 Udostępnij Opublikowano 5 Lutego 2012 Dodając swoje kilka groszy do lengthdirów. Myślę, że by w ogóle zrozumieć zastosowanie tych funkcji mimo wszystko trzeba poznać podstawy trygonometrii. Może nie tyle poznać co zrozumieć. Jeszcze jakieś pojęcie o izometrii było by miłe. I sorry, jestem po liceum ogólnokształcącym i moja wiedza matematyczna jest większa od większości tutaj. Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
Administratorzy gnysek Opublikowano 9 Marca 2012 Administratorzy Udostępnij Opublikowano 9 Marca 2012 ona ni ma zwiazku ze szkołą Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
Piotrek1910 Opublikowano 2 Maja 2012 Udostępnij Opublikowano 2 Maja 2012 O dzięki bardzo się przydaje nie tylko do strzelania. :) Jesteś super pro. Odnośnik do komentarza Udostępnij na innych stronach Więcej opcji udostępniania...
Rekomendowane odpowiedzi
Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto
Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.
Zarejestruj nowe konto
Załóż nowe konto. To bardzo proste!
Zarejestruj sięZaloguj się
Posiadasz już konto? Zaloguj się poniżej.
Zaloguj się